CCUS technology: an efficient method to generate electricity using the low-medium temperature geothermal reservoir

Hejuan Liu
Postdoctoral fellow
Research Centre on Water, Earth, and Environment (ETE)
Institut National de la Recherche Scientifique (INRS)
Outline

• 1. Introduction
• 2. World geothermal electricity utilization
• 3. Geothermal use status in China and Canada
• 4. CCUS technology to generate electricity from low-medium hydrothermal reservoir
• 5. Great potential of CCUS in Canada
• 6. Conclusions
1. Introduction - geothermal energy

- **Huge amount** *(140×10^6 EJ up to 5 km) (WEC, 1994)*

- **Clean**
 - less CO₂ emission

- **Sustainable**
 - oil reserve ≈ 46 years (SBC)
 - geothermal ≈ 280,000 years

http://athene.as.arizona.edu/~lclose/teaching/images/lect8.html
1. Introduction - geothermal energy reserves

15% of the energy is from geothermal sources.

- Coal: 22.6%
- Natural Gas: 21.7%
- Oil: 35.1%
- Other Renewables: 0.7%
- "Modern" Biomass: 1.4%
- Traditional Biomass: 9.3%
- Hydro: 2.3%
- Nuclear: 6.9%

(data source: Bertani, 2010)
1. Introduction - worldwide geothermal energy utilization

- Direct use:
 - Bathing and swimming: 30%
 - Horticulture: 8%
 - Industry: 4%
 - Aquaculture: 4%
 - Conventional district heating: 22%
 - Geothermal heat pumps district heating: 32%

- Electricity purpose:
 - Dual flash: 41%
 - Single flash: 20%
 - Dry steam: 27%
 - Binary: 11%
 - Back pressure: 1%

2004 level
(data source: Lund et al., 2005)

2010 level
(data source: Bertani, 2010)
2. World geothermal electricity status in 2015

(Bertani, 2010)
2. World geothermal electricity distribution

(redrawn from Gupta and Roy, 2007)
2. World geothermal electricity - distribution

(redrawn from Gupta and Roy, 2007)
3. Geothermal use status in China - heat flux

(Tao and Shen, 2008)
3. Geothermal use status in China - electricity

- 150-160 °C, 21.5 MW
- 92 °C, 300 kW
- 98 °C, 300 kW

(Zhang et al., 2014)
3. Geothermal use status in Canada

No geothermal electricity!

(Raymond et al., 2015)
Questions

- Can we use low-medium geothermal resources to generate electricity?
- How could we?
- How to ensure a clean production (low or zero CO_2 emissions)?
CO₂ Capture Utilization Storage

- Enhanced Oil Recovery (EOR) (current 16; 24 in the next 5 years)
- Enhanced Gas Recovery (EGR) (5 in the next 5 years)
- Enhanced Coalbed Methane (ECBM)
- Enhanced Geothermal System (EGS)
4. CCUS in geothermal power plant - CO$_2$ as circulation fluid

- Drying out of the reservoir
- Water content in the CO$_2$-rich phase

(Randolf and Saar, 2011)
4. CCUS in geothermal power plant

CO₂ as a pressure-support fluid

(Buscheck et al., 2012)
4. CCUS in geothermal power plant

Stage 1
- Production fluid: water
- CO₂ used to increase the reservoir pressure
- Like conventional binary cycle geothermal power plant

Stage 2
- Production fluid: Both CO₂ and water
- CO₂ and water used to extract heat from hot reservoir
- CO₂ (low specific enthalpy), but higher flow rate

Stage 3
- Production fluid: CO₂ + limited water
- CO₂ used to extract heat from reservoir
- CO₂-based binary cycle geothermal power plant
4. CCUS in geothermal power plant - simulation runs

CO₂ injection time and simulation time
35 years
4. CCUS in geothermal power plant - simulation runs

- Temperature
- CO$_2$ saturation

0.1 year
- 5.0 years
- 10 years
- 35 years

Caprock
4. CCUS in geothermal power plant - simulation runs

CO₂ storage + increased heat extraction efficiency!
5. Great potential of CCUS in Canada

Population distribution

https://openmedia.ca/blog/why-your-high-cell-phone-bills-have-nothing-do-size-canada
5. Great potential of CCUS in Canada

http://www.thecanadianencyclopedia.ca/en/article/petroleum/
5. Great potential of CCUS in Canada

Electricity Generation in Canada by Province and Fuel Type, 2008

Source: Statistics Canada, Report #57-003-X
5. Great potential of CCUS in Canada
6. Conclusions

- 1) 15% world energy consumption can be provided by geothermal utilization economically in 2050 (11.5% contributes from geothermal power plant)
- 2) Top three countries in geothermal electricity: the United States, Philippines, and Indonesia; China very negligible amount; Canada no geothermal electricity.
- 3) CCUS technology provides an efficient way to reduce CO$_2$ emissions and increase heat extraction efficiency.
- 4) Great potential to apply CCUS in Canada, especially in ON and QC provinces.
Thank you!
Worldwide CO₂ Storage Activities

50 Acid Gas injection sites in North America

4 New CO₂-EOR Pilots in Canada

70 CO₂-EOR projects in U.S.A.

Key
- **Depleted Oil Field**
- **ECBM projects**
- **EOR projects**
- **Gas production Fields**
- **Saline aquifer**

(IEA, 2007)
Structure of Earth (crust-mantle)

Upper crust
- Aluminosilica belt (granite layer) (poro 0.3-0.7%)

Lower crust
- Density 2.9 kg/m³, average chemical composition is similar to basalt
- Simatic belt - basalt
- Depleted with respect to the upper crustal rocks

Mantle
- Density 3.1-3.3 kg/m³, average chemical composition is similar to olivine
- Three types of mantle (page 8 in textbook): original mantle; depleted mantle; altered enriched mantle

Average depth 17 km
Moho surface
Geothermal power plants

Single Flash Power Plant

- **Turbine**
- **Generator**
 - **Steam**
 - **Condensate**
 - **Cooling Tower**
 - **Direct Use**

Binary Cycle Power Plant

- **Turbine**
- **Generator**
- **Heat exchanger with working fluid**

Flash Steam Power Plant

- **Turbine**
- **Generator**
- **Load**

Dry Steam Power Plant

- **Turbine**
- **Generator**
- **Load**

Production well

Injection well

Rock layers

Production well

Injection well

Rock layers

Heat exchanger with working fluid

geothermal zone

production well

injection well
Binary Cycle Power Plant Example
Convergent (Active) continental margin
World seismic belts
Development of CCS and CCUS worldwide

- The existed large-scale projects:
 - 16 (EOR); 4 (deep saline formation-DSF)

- In the next 5 years, more projects will be in operation:
 - 24 (EOR); 5 (EOR&EGR); 25 (DSF)

(Global CCS Institute, 2014)
2. World geothermal electricity status in 2012

(GEA, 2012)
Combined geothermal power plant system
Potential in the future

China’s Industrial CO₂ Emissions for one year
Total: 354 Mt

Oil and Gas Reservoirs
17,760 Mt

Unminerable Coal Areas
840 Mt

Total: 69,110 Mt

(LICO2N Website)

Oil and Gas Reservoirs
11.8 Gt

Unminerable Coal Areas
12 Gt

China’s Industrial CO₂ Emissions for one year
Total: 5.18 Gt

Deep Geological Formation
50,510 Mt

Deep Saline Formation
3066 Gt

99%

(Li et al., 2011)
Geothermal power plant status in China and Canada

- **Low-medium temperature geothermal reservoir (7)**
 - Houheyao in Huailai of Hebei Province (87°C, 200 kW) (shut in)
 - Tangdongquan in Zhaoyuan of Shandong Province (98°C, 300 kW) (shut in)
 - Reshuicun in Xiangzhou of Guangxi Province (79°C, 200 kW) (shut in)
 - Xiongyue in Gaixian of Liaoning Province (90°C, 200 kW) (shut in)
 - Wentang in Yichuanxian of Jiangxi Province (67°C, 200 kW) (shut in)
 - Deng wu in Fengshun of Guangdong Province (92°C, 300 kW) (in operation)
 - Huitang in Ningxiang of Hunan Province (98°C, 300 kW) (in operation)

- **High temperature geothermal reservoir (2)**
 - Yangbajing in Tibet Province (150-160°C, 21.5 MW)

In total, with an installed capacity of $24.78 \text{ MW} \approx 1.3 \times 10^8 \text{ kW} \cdot \text{h/ year.}$

In Canada, however, there is no geothermal type power plant. Several small-scale projects are in design. They are located at the western and northern part of Canada. About 95% of the geothermal direct utilization is from heat pumps.
Worldwide geothermal energy consumption

- **Direct use:**
 - District heating system (54%): operation depth several hundreds of meters. It should be noted that 32% comes from heat pumps (operation depth less than several tens of meters)
 - Bathing and swimming (including balneology) (30%)
 - Horticulture (greenhouses and soil heating) (8%)
 - Industry (4%)
 - Aquaculture (mainly fish farming) (4%)

- **Electricity purpose:**
 - Geothermal electric power plant: most > 2 km in depth (> 150 °C)
 - **Conventional geothermal power plant**
 - back pressure (1.35% in MW)
 - binary (11% in MW)
 - single flash (41.3% in MW)
 - double flash (19.5% in MW)
 - dry steam (26.9% in MW)
 - **EGS (in research stage)**
 - CPG
China geothermal energy consumption

- China geothermal use
- Bathing and swimming (~ 55%)
- Conventional district heating (~ 14%)
- Geo-thermal heat pumps used for space heating (~ 14%)

(Bertani, 2009)
3. Geothermal use status in China - hot water

(Liu et al., 2015)
Sedimentary basins in Canada

(Bachu, 2003)
CCS projects in Canada

<table>
<thead>
<tr>
<th>Project</th>
<th>Operator</th>
<th>Start time</th>
<th>Use</th>
<th>Scale</th>
<th>Investment</th>
<th>Location</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weyburn-Midale project</td>
<td>Cenovus, Apache</td>
<td>2000</td>
<td>EOR</td>
<td>2.2 Mt CO2/yr</td>
<td>$5.2B</td>
<td>Weyburn, Saskatchewan; Beulah, North Dakota</td>
<td>first fully-integrated, large-scale CCS project in the world; pipeline 323 km</td>
</tr>
<tr>
<td>Quest project</td>
<td>Shell</td>
<td>2015</td>
<td>saline storage</td>
<td>1.2 Mt CO2/yr</td>
<td>$1.35B</td>
<td>Fort Saskatchewan</td>
<td>first commercial-scale CCS in oil sands facility, only for CO2 storage</td>
</tr>
<tr>
<td>Alberta CO2 Trunk Line</td>
<td>Enhanced Energy</td>
<td>2014</td>
<td>EOR</td>
<td>1.7 Mt CO2/yr</td>
<td>$1.2B</td>
<td>Agrium, Northwest Upgrading, Fairborne Energy</td>
<td>large-scale CO2 pipeline</td>
</tr>
<tr>
<td>Boundary Dam project</td>
<td>SaskPower</td>
<td>2014</td>
<td>EOR</td>
<td>1.0 Mt CO2/yr</td>
<td>$1.24B</td>
<td>Estevan, Saskatchewan</td>
<td>full scale; at a 100MW coal-fired electricity power plant (retrofit); integrated 'clean coal' demonstration project</td>
</tr>
<tr>
<td>Fort Nelson project</td>
<td>Spectra Energy</td>
<td>planning phase</td>
<td>EOR + saline</td>
<td>2.0 Mt CO2/yr</td>
<td>$3.4B</td>
<td>Fort Nelson, British Columbia</td>
<td>full scale; at a natural gas processing plan</td>
</tr>
</tbody>
</table>
CCS costs

<table>
<thead>
<tr>
<th>CO₂ Capture</th>
<th>Pulverized Coal</th>
<th>Subcritical</th>
<th>SuperCritical</th>
<th>Ultra-supercritical</th>
<th>Supercritical Oxyfuel</th>
<th>Ultra-supercritical Oxyfuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Plant</td>
<td>No, Yes</td>
<td>1,302</td>
<td>1,335</td>
<td>1,437</td>
<td>1,335</td>
<td>1,437</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,689</td>
<td>1,724</td>
<td>1,845</td>
<td>1,893</td>
<td>1,937</td>
</tr>
<tr>
<td>Flue Gas Cleanup</td>
<td>246, 323</td>
<td>228</td>
<td>300</td>
<td>204</td>
<td>228</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td></td>
<td>292</td>
<td></td>
<td>273</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>CO₂ Capture</td>
<td>-</td>
<td>792</td>
<td>-</td>
<td>749</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td></td>
<td>673</td>
<td>-</td>
<td>210</td>
</tr>
<tr>
<td>CO₂ Compression</td>
<td>-, 89</td>
<td>-</td>
<td>84</td>
<td>-</td>
<td>76</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total Plant Cost¹ ($/kWe)</td>
<td>1,549</td>
<td>2,895</td>
<td>1,563</td>
<td>2,857</td>
<td>1,641</td>
<td>2,867</td>
</tr>
</tbody>
</table>

COE

- **Capital Charges² ($/kWh)**
 - 3.41, 6.81, 6.34, 6.71, 3.86, 6.74, 3.44, 6.89, 3.86, 6.81
- **Operating Costs ($/kWh)**
 - 2.99, 4.64, 2.85, 4.33, 2.60, 3.86, 2.85, 4.01, 2.60, 3.56
- **CO₂ TS&M² ($/kWh)**
 - - , 0.47 , - , 0.40 , - , 0.38 , - , 0.40 , - , 0.36
- **Total³ ($/kWh)**
 - 6.40, 11.88, 6.29, 11.44, 6.46, 10.98, 6.29, 11.30, 6.46, 10.73
- **Increase in COE (%)ᵃ**
 - - , 85 , - , 82 , - , 75 , - , 80 , - , 71
- **$/ton CO₂ avoidedᵃ**
 - - , 75 , - , 68 , - , 61 , - , 57 , - , 50

(DOE, 2008)
CCS costs

Integrated Gasification Combined Cycle

<table>
<thead>
<tr>
<th>CO₂ Capture</th>
<th>GE Energy</th>
<th>E-Gas</th>
<th>Shell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Base Plant</td>
<td>1,323</td>
<td>1,566</td>
<td>1,272</td>
</tr>
<tr>
<td>Air Separation Unit</td>
<td>287</td>
<td>342</td>
<td>264</td>
</tr>
<tr>
<td>Gas Cleanup/CO₂ Capture</td>
<td>203</td>
<td>414</td>
<td>197</td>
</tr>
<tr>
<td>CO₂ Compression</td>
<td>-</td>
<td>68</td>
<td>-</td>
</tr>
<tr>
<td>Total Plant Cost¹ ($/kWe)</td>
<td>1,813</td>
<td>2,390</td>
<td>1,733</td>
</tr>
</tbody>
</table>

COE

<table>
<thead>
<tr>
<th>Capital Charges² ($/kWh)</th>
<th>4.53</th>
<th>5.97</th>
<th>4.33</th>
<th>6.07</th>
<th>4.94</th>
<th>6.66</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Costs ($/kWh)</td>
<td>3.27</td>
<td>3.93</td>
<td>3.20</td>
<td>4.09</td>
<td>3.11</td>
<td>3.97</td>
</tr>
<tr>
<td>CO₂ TS&M³ ($/kWh)</td>
<td>-</td>
<td>0.39</td>
<td>-</td>
<td>0.41</td>
<td>-</td>
<td>0.41</td>
</tr>
<tr>
<td>Total³ ($/kWh)</td>
<td>7.80</td>
<td>10.29</td>
<td>7.53</td>
<td>10.57</td>
<td>8.05</td>
<td>11.04</td>
</tr>
<tr>
<td>Increase in COE (%)⁴</td>
<td>-</td>
<td>32</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>37</td>
</tr>
<tr>
<td>$/ton CO₂ avoided⁵</td>
<td>-</td>
<td>35</td>
<td>-</td>
<td>45</td>
<td>-</td>
<td>46</td>
</tr>
</tbody>
</table>

References:

2. "Pulverized Coal Oxycombustion Power Plants" November 2007 Presentation

Cost of electricity with CCS technology $ 104/MW-hour
without CCS technology $ 59/MW-hour
CCS costs

CBO’s Illustrative Calculations of the Estimated Reduction in the Cost of Electricity from CCS-Equipped Plants

(2010 dollars per megawatt-hour)

<table>
<thead>
<tr>
<th>Description</th>
<th>Levelized Cost of Electricity<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs When the First CCS Plant Goes into Operation</td>
<td></td>
</tr>
<tr>
<td>Initial CCS Plant</td>
<td>104</td>
</tr>
<tr>
<td>Coal-Fired Plant Without CCS</td>
<td>59</td>
</tr>
<tr>
<td>CCS Cost Differential (Percent)</td>
<td>76</td>
</tr>
<tr>
<td>Costs After Investment in 210 Gigawatts of CCS Capacity Worldwide</td>
<td></td>
</tr>
<tr>
<td>CCS Plant After 210 Gigawatts of Worldwide Investment</td>
<td>74</td>
</tr>
<tr>
<td>Coal-Fired Plant Without CCS<sup>b</sup></td>
<td>55</td>
</tr>
<tr>
<td>CCS Cost Differential (Percent)</td>
<td>35</td>
</tr>
</tbody>
</table>

Memorandum:
Cost Reduction for CCS Plant per 100 Gigawatts of New Investment (Percent)

14

(Congressional Budget Office, 2008)
Mobility of CO₂

CO₂ (red line)
water (blue line)

(Pruess, 2007)
1. Introduction - utilization of geothermal energy

http://explore-house.eu/en/2014/02/12/deep-geothermy/
1. Introduction - methods to geothermal electricity
2. World geothermal electricity utilization

Installed capacity and produced electricity (Bertani, 2010)
3. Geothermal use status in Canada - electricity

- The South Meager Creek Project

Hydrothermal type with T of 220-275 °C

(Bertani, 2010)
3. CO2 phase state